Learning a nonlinear distance metric for supervised region-merging image segmentation

نویسندگان

  • Antonio Carlos Sobieranski
  • Eros Comunello
  • Aldo von Wangenheim
چکیده

In this paper a novel region-merging image segmentation approach is presented. This approach is based on a two-step procedure: a distance metric is learned from some features on the image, then a piecewise approximation function for the Mumford-Shah model is optimized by this metric. The global optimum of the approximation function is inductively achieved under high polynomial terms of the Mahalanobis distance, extracting the nonlinear features of the pattern distributions into topological maps. The penalizer terms of the Mumford-Shah equation are based on new similarity criteria, computed from the topological maps and the class label information. The results we obtained show a better discrimination of object boundaries and the location of regions when compared with the conventional Mumford-Shah algorithm, even when supplied with other well-known similarity functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

Adaptive Distance Metric Learning for Diffusion Tensor Image Segmentation

High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive d...

متن کامل

Handwritten Text Line Segmentation by Clustering with Distance Metric Learning

Separating text lines in handwritten documents remains a challenge because the text lines are often ununiformly skewed and curved. In this paper, we propose a novel text line segmentation algorithm based on Minimal Spanning Tree (MST) clustering with distance metric learning. Given a distance metric, the connected components of document image are grouped into a tree structure. Text lines are ex...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Locally Linear Metric Adaptation with Application to Image Retrieval

Many supervised and unsupervised learning algorithms are very sensitive to the choice of an appropriate distance metric. While classification tasks can make use of class label information for metric learning, such information is generally unavailable in conventional clustering tasks. Some recent research sought to address a variant of the conventional clustering problem called semi-supervised c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2011